SemiGNN-PPI: Self-Ensembling Multi-Graph Neural Network for Efficient and Generalizable Protein-Protein Interaction Prediction

Ziyuan Zhao1,2,*, Peisheng Qian1,*, Xulei Yang1, Zeng Zeng3, Cuntai Guan2,
Wai Leong Tam4 and Xiaoli Li1,2
School of Computer Science and Engineering
Institute for Infocomm Research (I2R), Genome Institute of Singapore (GIS),, A*STAR, Singapore School of Microelectronics, Shanghai University, China zeminliu@nus.edu.sg, {tknguyen, yfang}@smu.edu.sg

Code: https://github.com/jacobzhaoziyuan/jacobzhaoziyuan.github.io

--- IJCAI 2023

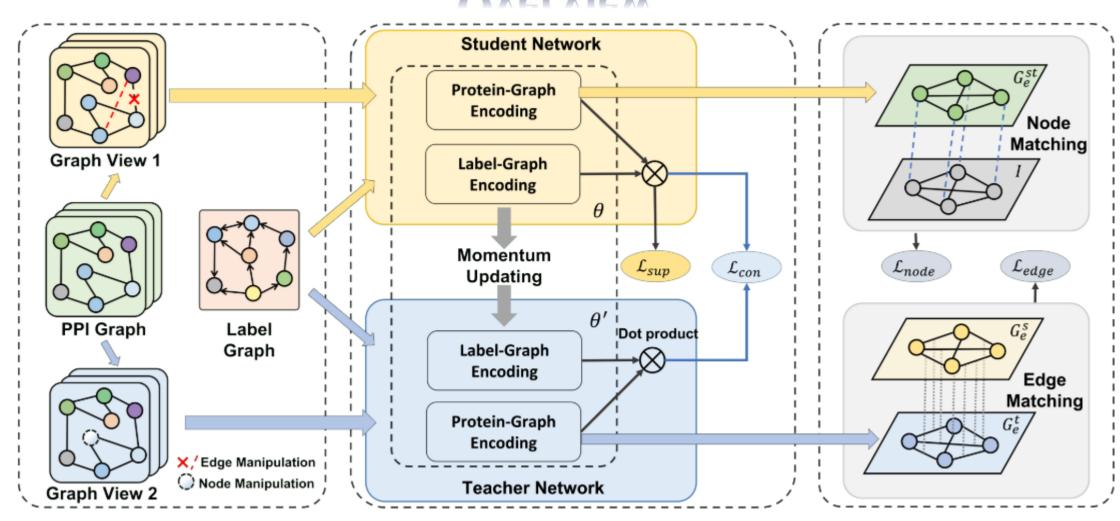
2023. 6. 18 • ChongQing

Reported by Jinyuan Zhang

- 1.Introduction
- 2.Overview
- 3.Methods
- 4. Experiments

Introduction

QUESTION:


Domainshift: existing methods are only developed and validated using in-distribution data .

Label scarcity: many interactions still need to be annotated from experimental data, only a small portion of labeled samples can be used for model training

WORK:

- 1. propose an effective Self-ensembling multi-Graph Neural Network-based PPI prediction (SemiGNN-PPI) framework
- 2. combining GNN with Mean Teacher (SSL model), to explore unlabeled data for self-ensemble graph learning and effectively utilize unlabeled data by consistency regularization with multiple constraints..

Overview

Method

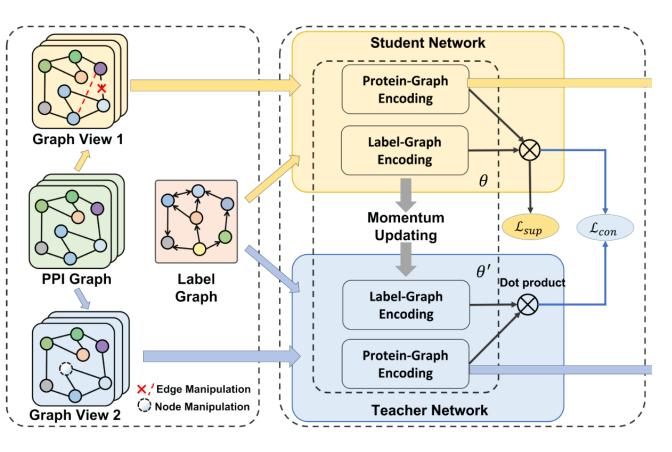
PPI graph Encoding(GNN)

$$h_p^{(l)} = \phi^{(l)}(h_p^{(l-1)}, f^{(l)}(\{h_p^{(l-1)} : u \in \mathcal{N}_k(p)\})), \quad (1)$$

Label-Graph Encoding

PPI graph Encoding(GNN+GIN+MLP)

$$h_p^{(l)} = g^l((1 + \epsilon^l) \cdot h_p^{(l-1)} + \sum_{u \in \mathcal{N}_h(p)} h_u^{(l-1)}). \tag{2}$$

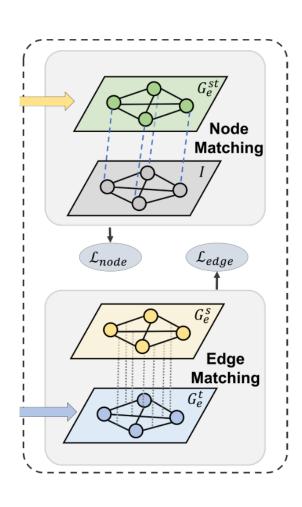

Label graph Encoding(GCN)

$$h_c^{(l+1)} = f(h_c^{(l)}, A), A \in \mathbb{R}^{t \times t},$$
 (3)

$$h_c^{(l+1)} = \delta\left(\widehat{A}h_c^{(l)}W^l\right),\tag{4}$$

Label-Graph Encoding

Method


$$\hat{y}_{ij} = W(h_{p_i} \cdot h_{p_j}). \tag{5}$$

$$\mathcal{L}_{sup} = \sum_{c=1}^{t} (y^c \log (\sigma(\hat{y}^c)) + (1 - y^c) \log (1 - \sigma(\hat{y}^c)))$$

$$\theta_{\mathbf{k}}' = m\theta_{\mathbf{k}-1}' + (1-m)\theta_{\mathbf{k}},\tag{6}$$

$$\mathcal{L}_{con} = \| f_t(E_u|G, \theta_k', \xi') - f_s(E_u|G, \theta_k, \xi) \|_2,$$
 (7)

Method

$$\mathcal{L}_{node} = ||\operatorname{diag}(\operatorname{Adj}(G_e^{st})) - \operatorname{diag}(I)||_2, \tag{9}$$

$$\mathcal{L}_{edge} = ||\operatorname{Adj}(G_e^s) - \operatorname{Adj}(G_e^t)||_2, \tag{8}$$

$$\mathcal{L} = \mathcal{L}_{sup} + \lambda_{con} \mathcal{L}_{con} + \lambda_{edge} \mathcal{L}_{edge} + \lambda_{node} \mathcal{L}_{node}, \quad (10)$$

Method		SHS27k			SHS148k			STRING			
		Random	DFS	BFS	Random	DFS	BFS	Random	DFS	BFS	
ML	RF	$78.45_{0.88}$	$35.55_{2.22}$	$37.67_{1.57}$	$82.10_{0.20}$	$43.26_{3.43}$	$38.96_{1.94}$	$88.91_{0.08}$	$70.80_{0.45}$	$55.31_{1.02}$	
MIL	LR	$71.55_{0.93}$	$48.51_{1.87}$	$43.06_{5.05}$	$67.00_{0.07}$	$51.09_{2.09}$	$47.45_{1.42}$	$67.74_{0.16}$	$61.28_{0.53}$	$50.54_{2.00}$	
DL	DPPI	$73.99_{5.04}$	$46.12_{3.02}$	$41.43_{0.56}$	$77.48_{1.39}$	$52.03_{1.18}$	$52.12_{8.70}$	$94.85_{0.13}$	$66.82_{0.29}$	$56.68_{1.04}$	
	DNN-PPI	$77.89_{4.97}$	$54.34_{1.30}$	$48.90_{7.24}$	$88.49_{0.48}$	$58.42_{2.05}$	$57.40_{9.10}$	$83.08_{0.11}$	$64.94_{0.93}$	$53.05_{0.82}$	
	PIPR	$83.31_{0.75}$	$57.80_{3.24}$	$44.48_{4.44}$	$90.05_{2.59}$	$63.98_{0.76}$	$61.83_{10.23}$	$94.43_{0.10}$	$67.45_{0.34}$	$55.65_{1.60}$	
Graph	GNN-PPI	$87.91_{0.39}$	$74.72_{5.26}$	$63.81_{1.79}$	$92.26_{0.10}$	$82.67_{0.85}$	$71.37_{5.33}$	$95.43_{0.10}$	$91.07_{0.58}$	$78.37_{5.40}$	
	GNN-PPI*	$88.87_{0.23}$	$75.68_{3.95}$	$68.84_{3.16}$	$92.13_{0.10}$	$83.77_{1.34}$	$69.02_{3.07}$	$94.94_{0.17}$	$90.62_{0.23}$	$79.76_{2.43}$	
M-Graph	SemiGNN-PPI	$89.51_{0.46}$	$78.32_{3.15}$	$72.15_{2.87}$	$92.40_{0.22}$	$85.45_{1.17}$	$71.78_{3.56}$	$95.57_{0.08}$	$91.23_{0.26}$	$80.84_{2.05}$	

Table 1: Performance of SemiGNN-PPI and baseline methods over different datasets and data partition schemes. GNN-PPI: reported results in the original paper. GNN-PPI * : reproduced GNN-PPI results. The scores are presented in the format of $mean_{std}$.

Method	STRING			SHS148k				SHS27k				
Method	5%	10%	20%	100%	5%	10%	20%	100%	5%	10%	20%	100%
Partition Scheme = Random												
GNN-PPI	$89.94_{0.29}$	$92.38_{0.51}$	$93.30_{0.56}$	$94.94_{0.17}$	$79.19_{0.67}$	$82.86_{0.49}$	$86.67_{0.22}$	$92.13_{0.10}$	$52.04_{3.32}$	$60.28_{12.26}$	$79.44_{1.19}$	$88.87_{0.23}$
Ours	$90.55_{0.10}$	$92.66_{0.59}$	$93.90_{0.41}$	$95.57_{0.08}$	$79.50_{0.31}$	$83.48_{0.30}$	$87.38_{0.24}$	$92.40_{0.22}$	$57.97_{1.13}$	$62.67_{11.26}$	$81.01_{0.47}$	$89.51_{0.46}$
Partition Scheme = DFS												
GNN-PPI	$86.60_{0.37}$	$87.91_{0.30}$	$89.42_{0.46}$	$90.62_{0.23}$	$68.77_{11.20}$	$78.36_{2.23}$	$80.96_{1.61}$	$83.77_{1.34}$	$53.41_{1.64}$	$58.43_{2.27}$	$65.73_{4.18}$	$75.68_{3.95}$
Ours	$87.54_{0.06}$	$88.98_{0.26}$	$90.23_{0.12}$	$91.23_{0.26}$	$69.94_{9.57}$	$81.12_{0.98}$	$83.63_{0.86}$	$85.45_{1.17}$	$58.48_{1.11}$	$61.18_{1.98}$	$70.31_{2.38}$	$78.32_{3.15}$
Partition Scheme = BFS												
GNN-PPI	$71.35_{4.67}$	$74.94_{2.35}$	$79.99_{2.75}$	$79.76_{2.43}$	$61.42_{3.29}$	$62.51_{3.07}$	$67.10_{3.48}$	$69.02_{3.07}$	$57.93_{4.11}$	$56.84_{12.19}$	$61.18_{6.58}$	$68.84_{3.16}$
Ours	$73.35_{4.90}$	$76.94_{2.53}$	$81.39_{2.44}$	$80.84_{\scriptstyle 2.05}$	$64.86_{2.97}$	$68.76_{1.62}$	$71.06_{3.35}$	$71.78_{3.56}$	$\boxed{60.15_{2.09}}$	$\mathbf{66.13_{2.01}}$	$67.69_{8.47}$	$\mathbf{72.15_{2.87}}$

Table 2: Performance comparison of different methods under different label ratios. The scores are presented in the format of $\mathrm{mean}_{\mathrm{std}}$.

Method	% Labels	1	Random Partition	ı	DFS P	artition	BFS Partition		
		BS (92.66%)	ES (6.95%)	NS(0.39%)	ES (75.95%)	NS(24.05%)	ES (85.70%)	NS(14.30%)	
GNN-PPI	100	89.17	72.44	50.00	77.81	63.44	71.03	44.80	
SemiGNN-PPI		89.68	72.93	50.00	81.75	66.32	75.14	57.00	
		BS (73.18%)	ES (24.98%)	NS (1.84%)	ES (72.87%)	NS (27.13%)	ES (47.71%)	NS (52.29%)	
GNN-PPI	20	83.46	70.10	43.68	64.40	54.21	59.04	66.33	
SemiGNN-PPI		84.09	71.95	45.78	73.30	55.46	58.10	73.82	
	1.0	BS (55.80%)	ES (38.03%)	NS (6.16%)	ES (63.36%)	NS (36.64%)	ES (41.14%)	NS (58.86%)	
GNN-PPI	10	79.64	69.64	38.41	56.13	53.85	36.02	47.89	
SemiGNN-PPI		80.22	70.33	41.67	61.07	57.90	57.39	72.73	
		BS (38.16%)	ES (47.61%)	NS (14.23%)	ES (46.63%)	NS (53.37%)	ES (43.18%)	NS (56.82%)	
GNN-PPI	5	53.43	44.33	40.64	53.85	49.62	56.10	51.95	
SemiGNN-PPI		59.76	$\bf 57.82$	42.71	58.25	56.25	58.18	58.60	

Table 3: Analysis on performance between GNN-PPI and SemiGNN-PPI over BS, ES, and NS subsets in the SHS27k dataset. The ratios of the subsets are annotated in brackets. The BS subsets are empty under DFS and BFS partitions and are omitted for brevity.

PPI Type	Type Ratio	Rando	m Partition	DFS	Partition	BFS Partition		
rri Type	Type Kano	GNN-PPI	SemiGNN-PPI	GNN-PPI	SemiGNN-PPI	GNN-PPI	SemiGNN-PPI	
Reaction	40.61%	$89.58_{0.15}$	$90.16_{0.43}$	$81.90_{1.65}$	$85.86_{0.71}$	$61.62_{1.29}$	$64.92_{5.73}$	
Binding	52.71%	$88.28_{0.48}$	$89.46_{0.57}$	$83.52_{1.41}$	$86.39_{0.67}$	$70.00_{4.10}$	$72.43_{6.33}$	
Ptmod	20.99%	$87.04_{0.29}$	$87.42_{0.33}$	$77.94_{1.67}$	$82.99_{1.44}$	$65.92_{5.52}$	$71.32_{5.04}$	
Activation	42.51%	$85.15_{0.38}$	$85.26_{0.46}$	$73.48_{2.74}$	$\boldsymbol{77.95_{1.19}}$	$67.44_{8.43}$	$68.04_{8.06}$	
Inhibition	20.20%	$87.21_{0.18}$	$88.09_{0.31}$	$72.46_{1.11}$	$\bf 78.12_{2.62}$	$60.20_{4.62}$	$67.71_{7.21}$	
Catalysis	44.67%	$89.36_{0.44}$	$\mathbf{90.35_{0.31}}$	$82.30_{0.80}$	$85.77_{1.29}$	$65.70_{4.42}$	$73.39_{6.33}$	
Expression	7.69%	$47.85_{0.79}$	$46.99_{0.22}$	$34.96_{3.74}$	$32.45_{5.96}$	$31.81_{6.87}$	$28.99_{4.90}$	
Macro-Average	-	$82.07_{0.39}$	$82.53_{0.38}$	$72.37_{1.87}$	$74.16_{2.09}$	$60.38_{5.03}$	$63.29_{5.29}$	
Micro-Average	-	$86.67_{0.22}$	$\mathbf{87.38_{0.24}}$	$80.96_{1.61}$	$83.63_{0.86}$	$67.10_{3.48}$	$71.06_{3.35}$	

Table 4: Per-class results in the SHS148k dataset with 20% training labels. The type ratios are calculated over the whole dataset.

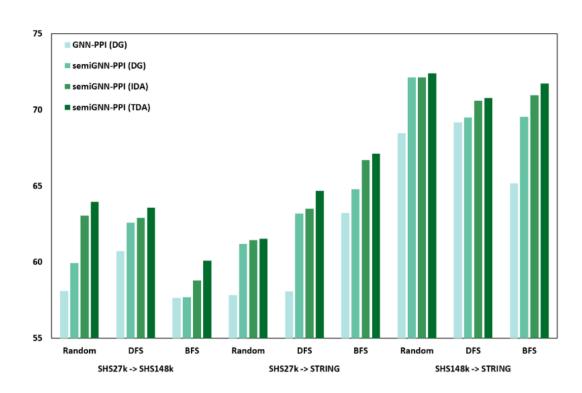


Figure 2: Performance comparison on trainset-heterologous testsets. DG: domain generalization. IDA: inductive domain adaptation. TDA: transductive domain adaptation.

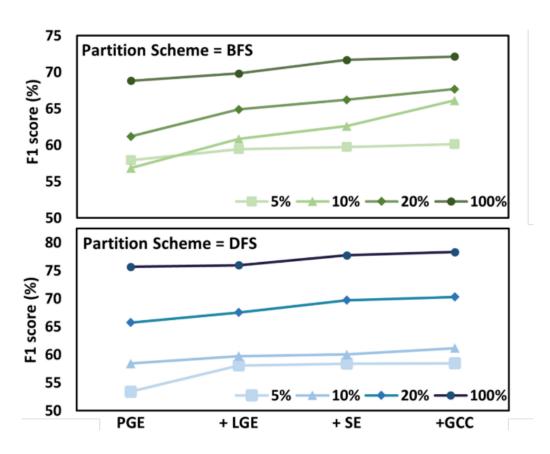


Figure 3: Results of ablation studies on different components of SemiGNN-PPI using the SHS27k dataset.

THANKS